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Clinical outcomes prediction
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Dynamic prediction of patient response
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Frequent prediction updates to limit ' Edge
impact of long-term uncertainty.

Actionable predictions are the most
important ones.
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Workflow

New data collection
Longitudinal patient observation
and continuous data collection

Observation

Trained : Improved
Intervention P
models outcomes

Model-guided intervention
Based on expert knowledge but
Predictions augmented by models' predictions.

Input
data

Retraining

Models are to be
retrained and
revalidated frequently
using new data.

Multiple short- and long-term predictions
Various outputs are to be modeled and used
for clinical decision making.
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Creating models — classic approaches

Logistic regression

Classification trees

Supervised

Linear regression

Highly augmented by
expert knowledge.

Machine
Learning

Clustering

Unsupervised Dimensionality reduction
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Huge data volumes

THE CANCER GENOME ATLAS (TCGA) BY THE NUMBERS

TCGA produced over

- TCGA data describes wincluding
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www.cancer.gov/ccg
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New data sources and techniques

Functional imaging, proteomics, single cell profiling, histochemistry, etc...

https://www.nibib.nih.gov/
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Performance of the models

Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Traditional Machine Learning

Performance

Amount of data

https://towardsdatascience.com/deep-learning-in-science-
fd614bb3f3ce
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Al trends

Al PubMed Searches by Year
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Imaging - example
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Hepatocellular
carcinoma

Digital pathology - example
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“CTNNB1, FMN2, TP53, and ZFX4 mutations, could be predicted
from histopathology images, with external AUCs from 0.71 to
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Insurance claims analysis — example

Poland 2009-2015, Cancer related 3.7 million of 2 83.3 million of E 114.8 million of

contacts ~ patients piii contacts with insurance claims
healthcare system

There are too many errors in insurance claims, so additional cancer registry is crucial.
However, we used Al to try to filter the data.
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There are some tradeoffs

Classical
Al approaches

Classical
approaches Al

Prototyping
speed

Understanding
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Sometimes more doesn’t mean better
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Risk of bias when limited understanding

“Correctional Offender ) | 3 |
Management Profiling for Amazon’s Recruiting Engine

Alternative Sanctions biased biased against women”
against black people”

“Predictive Policing (PredPol)
artificial intelligence biased
against minorities”

urie
esearch
Oncology

6/16/2022, OECI2022 ONCOLOGY DAYS



THE CANCER GENOME ATLAS (TCGA) BY THE NUMBERS
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Oncology

A lot of data per-patient, but not enough patients

Despite the huge amount of

data in oncology, we face the
problem of small cohorts for

many cancer types.

Al algorithms frequently need
many more patients than
classical approaches (due to
the shear number of
parameters).
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Most important data in EHR, but...

Electronic
Health Records

Real World Data
——
-
-

Key clinical data readily available
for longitudinal analysis and
interpretation (evidence).

|

[ m
In o

Focused on data required for
reimbursement claims and
regulatory bodies.

Essential clinical data mostly
stored in unstructured format.
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Al as a support tool to generate RWD — the future

Live Suggestions For The Electronic Health

Proper Content
o . Records
Interaction with proprietary and

° Complete documentation that is
easily manageable

continuously growing medical
dictionaries through NLP algorithms

Medical
Practitioner

“Complete Electronic Health
Real World Data
Records And Rea| WOI’ld Data Precise and comglete database
. . f clinical knowl
Created Simultaneously O EnoWEEee
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CliniNote technology in practice

v Run your HIS as ussual

Medical note content

v" Use the hints from CN sidebar

v" This is the D2D work of the
doctors

['] cliniNote

Standard EHR
software window

“Currently in various
hospitals in Poland”




summary

Classical statistical approaches won’t be
replaced but augmented by Al

Most Al approaches serve as a tool to generate
additional information

In order to be successful we need to change the
way in which health records are generated
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